Bifunctionality of a biofilm matrix protein controlled by redox state.

نویسندگان

  • Sofia Arnaouteli
  • Ana Sofia Ferreira
  • Marieke Schor
  • Ryan J Morris
  • Keith M Bromley
  • Jeanyoung Jo
  • Krista L Cortez
  • Tetyana Sukhodub
  • Alan R Prescott
  • Lars E P Dietrich
  • Cait E MacPhee
  • Nicola R Stanley-Wall
چکیده

Biofilms are communities of microbial cells that are encapsulated within a self-produced polymeric matrix. The matrix is critical to the success of biofilms in diverse habitats; however, many details of the composition, structure, and function remain enigmatic. Biofilms formed by the Gram-positive bacterium Bacillus subtilis depend on the production of the secreted film-forming protein BslA. Here, we show that a gradient of electron acceptor availability through the depth of the biofilm gives rise to two distinct functional roles for BslA and that these roles can be genetically separated through targeted amino acid substitutions. We establish that monomeric BslA is necessary and sufficient to give rise to complex biofilm architecture, whereas dimerization of BslA is required to render the community hydrophobic. Dimerization of BslA, mediated by disulfide bond formation, depends on two conserved cysteine residues located in the C-terminal region. Our findings demonstrate that bacteria have evolved multiple uses for limited elements in the matrix, allowing for alternative responses in a complex, changing environment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HmsC Controls Yersinia pestis Biofilm Formation in Response to Redox Environment

Yersinia pestis biofilm formation, controlled by intracellular levels of the second messenger molecule cyclic diguanylate (c-di-GMP), is important for blockage-dependent plague transmission from fleas to mammals. HmsCDE is a tripartite signaling system that modulates intracellular c-di-GMP levels to regulate biofilm formation in Y. pestis. Previously, we found that Y. pestis biofilm formation i...

متن کامل

Differential expression of the Escherichia coli autoaggregation factor antigen 43.

Antigen 43 (Ag43) is a self-recognizing surface adhesin found in most Escherichia coli strains. Due to its excellent cell-to-cell aggregation characteristics, Ag43 expression confers clumping and fluffing of cells and promotes biofilm formation. Ag43 expression is repressed by the cellular redox sensor OxyR. Here we used mutant versions of OxyR that are locked in either the reduced or the oxidi...

متن کامل

Vibrio cholerae Utilizes Direct sRNA Regulation in Expression of a Biofilm Matrix Protein

Vibrio cholerae biofilms contain exopolysaccharide and three matrix proteins RbmA, RbmC and Bap1. While much is known about exopolysaccharide regulation, little is known about the mechanisms by which the matrix protein components of biofilms are regulated. VrrA is a conserved, 140-nt sRNA of V. cholerae, whose expression is controlled by sigma factor σE. In this study, we demonstrate that VrrA ...

متن کامل

Preparation of Nickel Nanoparticles by Intramolecular Reaction of Nickel(II) Hydrazine Complex in the Solid State at Room Temperature

Ni6(N2H4)6(SO4)4(OH)2(H2O)8](SO4)(H2O)10 complex was prepared according to literature report. The reaction between aforementioned complex via sodium alkoxides as a reactants, were carried out in the solid state. The [Ni6(N2H4)6(SO4)4(OH)2(H2O)8](SO4)(H2O)10 undergoes an intramolecular two electrons oxidation-reduction reaction at room temperature and metallic nickel nanoparticles (Ni1-Ni5) was ...

متن کامل

Pyocyanin degradation by a tautomerizing demethylase inhibits Pseudomonas aeruginosa biofilms.

The opportunistic pathogen Pseudomonas aeruginosa produces colorful redox-active metabolites called phenazines, which underpin biofilm development, virulence, and clinical outcomes. Although phenazines exist in many forms, the best studied is pyocyanin. Here, we describe pyocyanin demethylase (PodA), a hitherto uncharacterized protein that oxidizes the pyocyanin methyl group to formaldehyde and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 114 30  شماره 

صفحات  -

تاریخ انتشار 2017